

Fusion: Creating a Star on Earth

Produced by General Atomics in Conjunction with Schools in the San Diego area

Why is Fusion Important?

- Geothermal
- Solar

Fossil Fuel Energy Sources -Advantages and Disadvantages

Auvantages	Disadvantages
Abundant	 Burns dirty Causes acid rain and air pollution
 Flexible fuel source with many derivitives Transportable 	 Finite supply Causes air pollution
Burns cleanly Transportable	Finite supplyDangerous to handle
	 Abundant Flexible fuel source with many derivitives Transportable Burns cleanly Transportable

Energy Source Advantages and Disadvantages

Energy Sources	Advantages	Disadvantages
Fission (Nuclear Power)	 Clean, no CO₂ Does not produce immediate pollution 	 Waste disposal is difficult Safety concerns
Hydroelectric	• Clean, no CO ₂	 Dam construction destroys habitats Geographically limited
Wind	• Clean, no CO ₂	 Huge numbers of windmills required for adequate power generation Geographically limited
Geothermal	• Clean, no CO ₂	Geographically limited
Solar	• Clean, no CO ₂	 Huge number of solar cells required for adequate power generation Geographically limited

World Fossil Reserves

Fusion Energy

The fossil fuel era is almost over. If we continue to burn fossil fuels for energy, they will last only another few hundred years. At our present rate of use, experts predict a shortfall in less than fifty years.

Fossil Fuel is Environmentally Costly 1000 MW electric plant

- It provides electricity for 1 million U.S. people (1.4 kW/person)
- We need at least 3 plants this size for San Diego
- We need at least 30 for California
- A coal plant this size consumes 8,600 tons of coal per day.
- This produces 32,000 tons of CO₂ per day
- This is 64 pounds of CO₂ for every American per day

In a typical fission process used as a source of energy, a neutron strikes a uranium nucleus causing it to split into fragments. As in the fusion process, there is a difference in mass that is released as energy

Fusion vs. Fission Advantages and Disadvantages

Energy Sources	Advantages	Disadvantages
Fission (Nuclear Power)	 Clean, no CO₂ Does not produce immediate pollution 	 Waste disposal is difficult Safety concerns
Fusion	 Inexhaustible supply of water-the fuel of fusion Fuel is accessible worldwide Clean Fusion reactors are inherently safe, they can explode or overheat 	 Huge research and development costs Reactor vessel core becomes radioactive

Comparison of Long-Term Energy Sources

	Resources	Environment	Safety	Cost
Coal	Large	Very Dirty	Good	Moderate
Today's Fission	Small	Waste Concerns	Active Control	Moderate
Advanced Fission	Large	Waste Concerns	Passive	Moderate to High
Solar	Infinite	Very Clean	Excellent	High
Fusion	Infinite	Clean	Inherent	?

So Why Aren't Fusion Power Plants Here Now?

Plasma is sometimes referred to as the fourth state of matter

1 ' H Hydrogen 1.00794													1.05				2 He Helium 4.00260
3 ² Li	4 2 Be Beryllium											5 3 B Boron	6 4 C Carbon	7 5 N Nitrogen	8 O Oxygen	9 7 F Fluorine	10 Neon
6.941 11 2 Na	9.01218 12 Mg											13 2 Al	14 °	14.0067	16 S	17 Cl	18 Ar
Sodium 22.98977 19 ² K "	Magnesium 24.305	21 Sc	22 Ti	23 2 V	24 2 Cr	25 Mn	26 Fe	27 Co	28 2 Ni	29 Cu	30 Zn	31 26.98154	32 ² Ge ¹⁸	30.97376 33 2 As 18	32.06 34 Se	35.453 35 Br	39.948 36 Kr
Potassium 39.0983 37 2	Calcium 40.08	Scandium 44.9559	Titanium 47.88	Vanadium 50.9415 41 ²	Chromium 51.996 42 ²	Manganese 54.9380 43 ²	Iron 55.847 44	Cobalt 58.9332	Nickel 58.69 46 ²	Copper 63.546 47	Zinc 65.38 48 ²	Gallium 69.72 49	Germanium 72.59 50 ²	Arsenic 74.9216 51	Selenium 78.96 52 ²	Bromine 79.904 53 ²	Krypton 83.80 54
Rubidium 85.4678	Strontium 87.62	Y Yttrium 88.9059	Zr Zirconium 91.22	Niobium 92.9064	Molybdenum 95.94	Tc Technetium (98)	Ru Ruthenium 101.07	Rhodium 102.9055	Palladium 106.42	Ag Silver 107.8682	Cadmium Cadmium 112.41	In 18 Indium 114.82	Sn 18 Tin 118.69	Sb 18 Antimony 121.75	Te 10 Tellurium 6 127.60	lodine 126.9045	Xe Xenon 131.29
55 Cs Cesium	56 Ba		72 Hf	Tantalum	74 8 W 18 Tungsten 2	75 Re	76 Os is Osmium	77 2 Ir 10 15 17	78 Pt 32 Platinum 1	79 Au st Gold	80 2 Hg 18 Mercury 2	81 2 TI 55 Thallium 3	82 2 8 Pb 32 Lead 4	83 8 Bi 18 Bismuth 5	84 2 Polonium 6	85 at an	86 Rn
132.9054 87 Fr	137.33 88 Ba		178.49 104 Una	180.9479 105 Unp	183.85 106 Unh	186.207 107 Uns	190.2 108 Uno	192.22 109 Une	195.08	196.9665	200.59	204.383	207.2	208.9804	(209)	(210)	(222)
Francium (223)	Radium 226.0254 2		Unnilquadium (261)	Unnipentium (262)	Unnilhexium (263)	Unnilseptium (262)	Unniloctium (265)	Unnilennium (266)									

57 2 La Lanthanum 2 138.9055	58 Ce 2 Cerium 140.12	59 2 8 Pr 28 9 Pr 28 9 Praseodymium 2 140.9077	60 2 Nd 16 Neodymium 2 144.24	61 8 Pm 23 Promethium 2 (145)	62 2 8 Sm 34 Samarium 2 150.36	63 2 Eu Europium 2 151.96	64 2 Gd 16 Gadolinium 2 157.25	65 10 10 10 10 10 10 10 10 10 10 10 10 10	66 2 Dy 16 Dysprosium 2 162.50	67 2 HO 15 HOlmium 29 Holmium 2 164.9304	68 2 Er 15 Erbium 2 167.26	69 2 Tm 10 10 11 11 11 11 11 11 11 11	70 2 8 18 13 173.04 2 2 8 2 2 173.04	71 2 Lu 18 Lutetium 2 174.967
89 2 Actinium 227.0278 2	90 Th Thorium 232.0381	91 2 Pa 18 Protactinium 9 231.0359 2	92 2 U 10 Uranium 21 238.0289 2	93 ************************************	94 2 Pu 18 22 Plutonium 24 (244) 2	95 2 Am 18 Americium 25 (243) 2	96 2 Cm 18 Curium 25 (247) 2	97 2 Bk 32 Berkelium 9 (247) 2	98 2 Cf 30 Californium 8 (251) 2	99 8 ES 32 Einsteinium 8 (252) 2	100 2 Fermium 30 (257) 2	101 2 Md 18 22 Mendelevium 8 (258) 2	102 2 No Nobelium 2 (259) 2	103 28 Lr 32 Lawrencium 32 (260) 2

Thermonuclear Reactions in the Sun

$$_{1}H^{1} + _{1}H^{1} \Longrightarrow _{1}H^{2} + _{1}e^{0}$$

In the first reaction, 2 protons combine to form deuterium and a positron. One of the protons is converted into a neutron and a positon proton ____ neutron

positron

In the 2nd reaction a

$_{1}$ H ² + $_{1}$ H ¹ \Longrightarrow $_{2}$ He ³ + (ga rad	mma) liation	proton + deuterium unite to form the light isotope of helium, ₂ He ³

$$_{2}\text{He}^{3} + _{2}\text{He}^{3} \Longrightarrow _{2}\text{He}^{4} + _{1}\text{H}^{1} + _{1}\text{H}^{1}$$

The first two reactions must occur twice for the 3rd reaction to occur

Summary of Solar Fusion Reactions

$$_{2}\text{He}^{3}$$
 + $_{2}\text{He}^{3}$ \implies $_{2}\text{He}^{4}$ + P + P + Energy

But the Potential Payoff is Enormous

• The fraction of mass "lost" is just 38 parts out of 10,000

• Nevertheless, the fusion energy released from just 1 gram of DT equals the energy from about 2400 gallons of oil

$E = mc^2$

Einstein's equation that equates energy and mass

E = Energy m = Mass c = Speed of Light (3 x 10⁸ m/sec)

Example: If a 1 gram raisin was converted completely into energy E = 1 gram x c² $= (10^{-3} \text{ kg}) (3 \times 10^8 \text{ m/sec})^2$ $= 9 \times 10^{13} \text{ joules}$

This would be equivalent to 10,000 tons of TNT!

Energy Release $E = mc^2$

Abundant Energy From Sea Water

Reduced Waste Products

Power Source	Total Waste (cubic meters)	High-Level RAD Waste
Coal	10,000 (ashes)	0
Fission	440	120
Fusion:		
Today's Materials	2000	30
Advanced Materials	2000	0

1000 MW(e) Power Plant - 30 year Lifetime

Fusion Represents an Inexhaustible Energy Supply for Mankind

Methods to Heat Deuterium-Tritium Fuel

- Compressing the fuel
- Internal Electric Current
- Neutral Particles
- Microwaves
- Lasers

Fusion can be accomplished in Three Different Ways

Inertial Confinement Fusion Concept

Our ultimate goal is to create a short lived, microminiature star which will release energy by thermonuclear fusion in the same manner that our sun and the stars produce energy.

Typical Plasmas

	Density n _e (m ⁻³)	Tempera T _e (eV)	ature °K
Interstellar	10 +6	1	104
Solar Corona	10 12	10 ²	106
Thermonuclear	10 20	104	10 ⁸
Laser	1026	10 ²	10 6
Air Density	10 25	1/40	294

- Particles are charged
- Conducts electricity
- Can be constrained magnetically

Where are the Current Major Fusion Energy Research Projects?

List of Major Programs/Devices Worldwide

JET from the European Community JT-60U in Japan NOVA at Lawrence Livermore Labs in California TFTR at PPPL in Princeton, New Jersey DIII-D at General Atomics in San Diego, CA

NOVA Machine Used Inertial Confinement (Has Not Proved as Successful as Magnetic Confinement)

TFTR is located at PPPL Princeton, New Jersey

DIII-D is Located at General Atomics San Diego, CA

ITER

(International Thermonuclear Experimental Reactor)

- Cooperative effort by Europe, Japan, U.S. and Russia
- Conceptual Design Activity completed
- Engineering Design Activity is underway
 - Three sites: San Diego, U.S.A., Garching, Germany and Naka, Japan
 - Detailed engineering and protoype testing
 - Cost of \$300 M per party over 6 years
- Decision to proceed with construction will be made in 1995

ITER

(International Thermonuclear Experimental Reactor)

30 meters diameter 30 meters tall

Fusion Experiments Now Approach Ignition Conditions

What Progress Has Been Made in Magnetic Fusion?

World Energy Resources Indicate New Sources of Clean Energy Must be Found

ANNUAL USE 0.3 Q/year

Oil	13
Fossil	80
Uranium	9,000
Lithium	7,600
Deuterium	16,000,000

In units of Q or 1018 BTU

