The electromagnetic spectrum: its origin and its importance in understanding the universe

Or, how do we know what we know about 100,000,000 K plasma?

Presented by Rick Lee Chief Operator, DIII-D Operations Manager, Fusion Education Program General Atomics San Diego, CA

Demonstrations

Definition of EM radiation

- EM energy originates from accelerated charged particles (electrons, ions)
 - Demo: Different plasma discharge tubes
 - Human modeling of EM energy Poynting vector, photons

• Simple observations & basic tools based on natural phenomena

- Your eyes
- Radio, IR camera: Windows & walls (transmission, absorption, reflection)
- Spectroscopy, polarization (demos: diff grating, polarizer)
- Scattering (milky water and flashlight)

• Detection & Interpretation- origin of information

- General discussion about detectors
- Sum it all up with a game of 'Jeopardy'

Electromagnetic spectrum – general definition

- Electromagnetic energy is energy that can move through space – a medium is not necessary, and can be modeled using waves that describe both E, B behavior or particles (photons).
- The EM spectrum encompasses a continuum of 'long' wavelength (power, tv, radio) through 'short' wavelength (gamma rays) energy

Generalized perpetuated view of EM spectrum

- Continuum, described as waves
- Titled regions are historical and not symmetric
- All regions follow similar physical rules
- Different regions interact differently with matter

A review of simple atomic states

Ionized state (plasma)

+

Spontaneous emission of electromagnetic energy

Origin of electromagnetic energy

Acceleration of charges

- Changes in electronic energy levels
- Bond vibrations
- A(de)ccelerating charges due to electric field and/or magnetic field
 - charges have spiral trajectory in magnetic field
 - charges have linear trajectory in electric field

Demo 1: Use of HV source to excite and ionize gas atoms and molecules

- Let's use a hand held HV coil to:
 - Excite the gas atoms within a tube
 - Then, ionize them to the plasma state
- What to observe:
 - Light emission (how does this relate to excitation or ionization?)
 - Smiles (how do these relate to learning and remembering the experience?)

Tools and Observations in Science

- Science is learning something about an environment, object, or phenomenon by measuring, discovering trends, and using models to simplify and predict outcomes
- In the case of understanding fusion-relevant plasma discharges, we can't simply use touch, smell, sight, hearing, or taste!
- Measuring tools used in plasma science include
 - those based on how charged particles interact with each other
 - those based on how charged particles produce and interact with electromagnetic energy (light, microwaves, etc.)
- We must use tools based on fundamental scientific principles that are suited for the job
 - spectroscopy, voltage probes, laser-induced or particle-induced action (scattering or fluorescence), magnetics probes, neutron & gamma ray detectors, infrared detectors, plus others

Modeling EM radiation as waves – Maxwell's eqns

• We can model EM energy as waves because the equations governing electric and magnetic fields (Maxwell eqns) are solved using sine and cosine functions.

Point Form	Integral Form		
$\nabla \times \vec{H} = \vec{J}_c + \frac{\partial \vec{D}}{\partial t}$	$\oint \vec{H} \cdot d\vec{I} = \int_{s} (J_{c} + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S}$	(Ampère's law)	
$\nabla \times E = -\frac{\partial \vec{B}}{\partial t}$	$\oint \vec{E} \cdot d\vec{I} = \int_{S} (-\frac{\partial \vec{B}}{\partial T}) \cdot d\vec{S}$	(Faraday's law; S fixed)	
$\nabla \boldsymbol{\cdot} \vec{D} = \rho$	$\oint_{S} \vec{D} \cdot d\vec{S} = \int_{v} \rho dv$	(Gauss' law)	
$\nabla \bullet \vec{B} = 0$	$\oint_{S} \vec{B} \cdot d\vec{S} = 0$	(nonexistence of monopole)	

Modeling EM radiation as waves – what is 'waving'?

 We commonly draw a squiggly wave on the board to describe a generic EM wave (light, for example)

But, what is 'waving' ? EM wave eqn has space and time in it.

The sine waves are the tips of the orthogonal electric and magnetic field vectors that make up the term 'electromagnetic'. The **envelope** of the vector tips of the E vector is what is usually drawn in class.

Poynting vector, S, has units of energy per (area time) = J/(area time), or W/m² and direction of the cross product of **E** X **B**.

Serway, Physics for Scientists and Engineers, 5/e Figure 34.3a Harcourt, Inc.

So, why do we draw only a single sine wave?

- Most detectors (including rhodopsin) are sensitive to the electric field vector and produce a voltage
- Magnitude of magnetic field vector set is 1/c that of the E vector set (B ≈ E/c)
- Ease of construction on 2-d plane the board

Make your own Poynting vector

- Standard no. 2 pencil
- 3-ring binder hole punch
- Scissors or paper cutter
- E,B vector envelope template (8.5" x 11" paper)
- Copy template onto different colored paper
- Punch, cut, punch, cut as needed to make ≈2 cm wide strips with punched holes
- Weave **correctly** onto pencil; note orientation of E, B vectors follows the right hand rule for energy propagation in direction of E X B.

Origin of EM radiation – energetic matter

name	λ Range (m)	f (Hz)	Origin	Comment
electric power	>10 ⁵	< 10 ²	Molecular/electron vibrations	60 Hz house electricity
radio/TV	10 ⁻¹ - 10 ⁴	10 ⁻¹ - 10 ⁴	molecular/electron vibrations	atm can reflect these
microwave	10 ⁻³ – 10 ⁻¹	10 ⁹ - 10 ⁴	molecular/electron vibrations	Blocked by metal mesh in ovens
infrared	10 ⁻⁷ – 10 ⁻³	10 ¹⁴ - 10 ⁹	molecular vibs; e- transitions	Emitted from all objects
visible	4 – 7 x 10 ⁻⁷	1014	e- transitions	1/40 of EMR
ultraviolet	10 ⁻⁸ – 4 x 10 ⁻⁷	10 ¹⁶ - 10 ¹⁴	e- transitions	sunburn cause
x-ray	10-11 - 10-8	10 ¹⁹ - 10 ¹⁶	e- transitions/ braking	Wavelength size of atom
gamma ray	< 10-11	> 10 ¹⁹	nuclear transition	Damages tissue; ionization

Observational characteristics – windows & walls

- **EM energy** can be transmitted, reflected, scattered, or absorbed
- If EM energy is transmitted material is a "window"
- If EM energy is not transmitted material is a "wall"
 Could be a mirror in a truly reflective case
- We'll use visible light, radio, microwaves, infrared to emphasize different aspects of 'windows and walls'

Microwave oven doors are both a window and a wall

Microwave oven doors allow visible light through, so junior can see his burrito go 'round and 'round – **a window**

Microwave oven doors do not allow microwaves through, so junior doesn't get cooked like his burrito – **a wall**

Glass and plastic windows are a window for visible light and a wall for infrared radiation

Standard glass and plastic windows transmits visible light - a **window** but absorb (block the transmission) infrared energy – a **wall**.

Interference and the diffraction grating

- Superposition of waves allows amplitudes from two or more waves to 'add' constructively or destructively
 - Adding e-field vectors (envelopes)
 - Recall sine, cosine waves
 - Diffraction grating uses this concept with many slits $n\lambda = dsin\theta$

n is order, d is grating dimensions, θ is angle of diffraction

Diffraction grating

- Many tiny parallel slits
- Diffraction grating eqn: $\lambda = dsin\theta$

- d is distance between slits
- \Box θ (theta) is angle from grating normal where light of wavelength λ will be bright due to constructive interference

Example: suppose d = 1E-6 m (N = 1000slits/mm) and λ is 6500E-10 m (red), then θ is

$$\theta = \sin^{-1}((6.5E-7)/1E-6) = 40.6^{\circ}$$

Diffraction grating – viewing multiple wavelength sources

- Use grating to view discharge tubes
- Light having specific wavelengths is observed
- Separated by angle $\Delta \theta$ from central normal
- Closeup of light 'bars' leads to Gaussian structure
- Width of structure due to particle movement
- Doppler shift of whole structure may be present if the velocity between source and observer is great enough.

Detectors – biological, electronic

- 11-cis-retinal within protein opsin (together, called rhodopsin), chlorophylls, photoreceptor flavoproteins
 - Chemical rxns caused by electromagnetic energy lead to vision, CO2 assimilation, or automatic directional locomotion responses.
- Photodiodes, CRT (vidicon), CCDs, thermocouples, etc
 - Sensitive to visible light, heat, other portions of the em spectrum. EM energy leads to electron transfer to allow voltage production.

Infrared camera as an example

• Detects \approx 7 – 14 μ m wavelength

- Room temp peaks at $\approx 10 \ \mu m$
- Warmer objects have shorter peak wavelengths
- Detector array provides an image

DIII-D Tokamak & peripheral systems in San Diego

Approximate location of DIII-D Tokamak inside the Machine Hall ("the Pit")

Inside view of DIII-D: diagnostics, fueling, vacuum pumping, heating ports

Are you up for a game of Jeopardy?

Jeopardy

